晶圓翹曲之應力分析技術

作者:陳冠州、黃智勇、王慶鈞、李昌駿、劉彥禹、張詠瑄

氮化矽(SiNx)薄膜有優異的光學、電學與機械性能,所以被廣泛運用在半導體及其相關領域。舉例來說,氮化矽因為擁有高介電係數(Dielectric constant)與高崩潰電壓(Breakdown voltage),可以降低從閘極往基極方向的漏電流,進而減少晶片的功耗,可取代氧化矽作為介電材料[1]。除此之外,氮化矽有高折射率,因此用於多晶矽(Polysilicon)太陽能電池中做為抗反射層[2-3]。在半導體產業中,氮化矽薄膜有非常多重要的功能,例如可在表面做為鈍化保護層(Passivation layer)[1, 4-6]、控制元件的本質應力[5-6, 8]、做為氧氣與水氣的阻障層(Barrier)等等[4-5]。目前常見許多不同的方法可以製備出氮化矽薄膜,例如大氣壓化學氣相沉積,低壓化學氣相沉積,以及電漿輔助化學氣相沉積(Plasma-enhanced chemical vapor deposition, PECVD)。其中,因為有電漿輔助提供反應所需的能量,故只有PECVD技術可以在不超過攝氏400度的低溫下進行[4-7],適合用於氮化矽、氧化矽與氮氧化矽等薄膜的製程。在矽晶片上沉積氮化矽薄膜時,由於其中的殘留應力(Residual stress),薄膜經常會產生嚴重的翹曲。此處所謂之殘留應力亦可稱為內應力,可以分成兩種:外質應力(Extrinsic stress)與本質應力。外質應力是因為不同材料之間的熱膨脹係數不匹配;由於薄膜製程經常處於高溫環境,當製程結束回到室溫時,會產生非常大的應力。至於本質應力的是因為不同材料之間晶格不匹配,以及薄膜成長過程中材料相態變化的效應等[9]。如果晶圓翹曲程度過大,會造成後續製程加工諸多困難,降低元件的產率與性能。在實驗中,透過調整PECVD的輸入參數,可以改變薄膜的內應力,其中,NH3與SiH4氣體流率比值及射頻功率為影響薄膜組成的主因[10],也會影響晶圓的翹曲量。

薄膜應力估算理論及PECVD參數之影響

在薄膜應力分析相關的理論研究中,最為人所熟知的即是Stoney所提出的薄膜應力模型,其假設基板材料為均質(Homogeneous)、各向同性(Isotropic)且材料性質為線彈性(Linear elastic)、薄膜厚度hf 遠小於基板厚度hs、結構厚度遠小於結構寬度、不考慮厚度方向的應力,並忽略結構之邊界效應[11]。由翹曲之曲率率半徑ρ、基板的楊氏係數 Es 與蒲松比νs,可計算薄膜應力為:

(1)

藉由基板於製程後產生之彎曲曲率,可以預測薄膜之殘留應力。但是當基板厚度並非遠大於薄膜厚度大小時,Stoney方程式不適用,故Freund等人提出可用於薄化後的基板上沉積的薄膜計算[12],其薄膜應力表示為:

(2)

其中

(3)

此修正公式延伸自Stoney方程式,並進一步考慮了薄膜厚度對於基板彎曲曲率之影響。Hsueh則在2001年提出了由殘餘應力與外部力矩而引起的多層薄膜變形,由通解可求得在多層薄膜中殘餘應力的分布情形[13],若簡化為單層薄膜與基板的翹曲,則其平均薄膜殘餘應力σf為:

(4)

此方程式不僅考量到薄膜厚度的影響,也考慮沿著厚度方向上不同的彎曲應力;透過其結構彎曲變形,找出曲率半徑與薄膜應力之關係式。

圖1 PECVD參數與SiNx薄膜應力關係圖[14]
圖2 射頻功率對本質應力的影響[16]

另一方面,欲計算氮化矽薄膜經由PECVD製程沉積於晶圓表面後所受到的內應力,必須先得知氮化矽形成薄膜後具有的本質應力。在Li等人的研究中,藉由系統性地改變製程參數,例如:反應氣體流率、腔體氣壓、基板溫度與射頻功率等條件,配合其所沉積出的氮化矽薄膜,實際測量薄膜折射率、密度與紅外光譜,分析上述參數對本質應力的影響。結果如1所示。該圖顯示射頻功率、基板溫度,以及NH3與SiH4兩者氣體流率比值愈大,則本質應力愈大;而腔體氣壓則是與本質應力呈反比[14]。此外,Morin等人的研究中也顯示NH3與SiH4氣體流率比值愈大,意即在矽含量較低的薄膜中,其本質應力較大[15]。Claassen等人的研究,則提到在射頻頻率高於4MHz時,薄膜內應力會隨著功率增加,由拉伸應力轉變為壓縮應力;射頻頻率低於4MHz時,薄膜內應力為壓縮應力,其絕對值會隨著功率增加而上升[16],分析結果如2所示。

文章轉載自工業技術研究院機械工業雜誌